Vector field visualization using Markov Random Field texture synthesis

نویسندگان

  • Francesca Taponecco
  • Marc Alexa
چکیده

Vector field visualization generates an image to convey the information existing in the data. We use Markov Random Field texture synthesis methods to generate the visualization from a set of example textures. The examples textures are chosen according to the vector data for each pixel of the output. This leads to dense visualizations with arbitrary example textures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture synthesis via a noncausal nonparametric multiscale Markov random field

Our noncausal, nonparametric, multiscale, Markov random field (MRF) model is capable of synthesizing and capturing the characteristics of a wide variety of textures, from the highly structured to the stochastic. We use a multiscale synthesis algorithm incorporating local annealing to obtain larger realizations of texture visually indistinguishable from the training texture.

متن کامل

Enhanced Spot Noise for Vector Field Visualization

Spot noise is a technique for texture synthesis, which is very useful for vector field visualization. This paper describes improvements and extensions of the basic principle of spot noise. First, better visualization of highly curved vector fields with spot noise is achieved, by adapting the shape of the spots to the local velocity field. Second, filtering of spots is proposed to eliminate unde...

متن کامل

Near-Regular Texture Synthesis

This paper describes a method for seamless enlargement or editing of difficult colour textures containing simultaneously both regular periodic and stochastic components. Such textures cannot be successfully modelled using neither simple tiling nor using purely stochastic models. However these textures are often required for realistic appearance visualisation of many man-made environments and fo...

متن کامل

Texture Synthesis via a Non-parametric Markov Random Field

In this paper we present a non-causal non-parametric multiscale Markov random field (MRF) texture model that is capable of synthesising a wide variety of textures. The textures that this model is capable of synthesising vary from the highly structured to the stochastic type and include those found in the Brodatz album of textures. The texture model uses Parzen estimation to estimate the conditi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003